Double Discretization Difference Schemes for Partial Integrodifferential Option Pricing Jump Diffusion Models

نویسندگان

  • M.-C. Casabán
  • L. Jódar
چکیده

and Applied Analysis 3 For the sake of clarity in the presentation we recall that in a jump-diffusion model, the modified stochastic differential equation SDE for the underlying asset is dS S μdt σdz ( η − 1dq, 1.1 where S is the underlying stock price, μ is the drift rate, σ is the volatility, dz is the increment of Gauss-Wiener process, and dq is the Poisson process. The random variable representing the jump amplitude is denoted by η, and the expected relative jump size is denoted by K E η − 1 . The jump intensity of the Poisson process is denoted by λ. Based on the SDE 1.1 the resulting PIDE for a contingent claim V S, t is given by 7, 14, 29 : ∂V ∂t 1 2 σ2S2 ∂2V ∂S2 r − λK S ∂S − r λ V

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pricing Options in Jump-Diffusion Models: An Extrapolation Approach

We propose a new computational method for the valuation of options in jump-diffusion models. The option value function for European and barrier options satisfies a partial integrodifferential equation (PIDE). This PIDE is commonly integrated in time by implicit-explicit (IMEX) time discretization schemes, where the differential (diffusion) term is treated implicitly, while the integral (jump) t...

متن کامل

Option Pricing on Commodity Prices Using Jump Diffusion Models

In this paper, we aim at developing a model for option pricing to reduce the risks associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed Lekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctuations.The natures of log-returns of the prices exhibit a...

متن کامل

An Iterative Method for Pricing American Options under Jump-Diffusion Models

We propose an iterative method for pricing American options under jumpdiffusion models. A finite difference discretization is performed on the partial integro-differential equation, and the American option pricing problem is formulated as a linear complementarity problem (LCP). Jump-diffusion models include an integral term, which causes the resulting system to be dense. We propose an iteration...

متن کامل

Option Pricing in Hilbert Space-Valued Jump-Diffusion Models Using Partial Integro-Differential Equations

Hilbert space-valued jump-diffusion models are employed for various markets and derivatives. Examples include swaptions, which depend on continuous forward curves, and basket options on stocks. Usually, no analytical pricing formulas are available for such products. Numerical methods, on the other hand, suffer from exponentially increasing computational effort with increasing dimension of the p...

متن کامل

Reduced order models for pricing European and American options under stochastic volatility and jump-diffusion models

European options can be priced by solving parabolic partial(-integro) differential equations under stochastic volatility and jump-diffusion models like Heston, Merton, and Bates models. American option prices can be obtained by solving linear complementary problems (LCPs) with the same operators. A finite difference discretization leads to a so-called full order model (FOM). Reduced order model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014